Enhanced Maneuverability and Stability of Missiles

Presented To

3rd Annual Missiles and Rockets Symposium April 19, 2002

> Fred Lisy, Vice President, COO Troy Prince, Sr. Engineer

Cleveland, Ohio 44143-2140 Phone (440) 449-5785 Fax (440) 449-6524

Funding through — Air Vehicles Directorate, WPAFB, SBIR Program

Outline

- Orbital Research Background
 - Company History
 - Programs
- Active Flow Control Program Research
- Missile Stability and Maneuverability Enhancement
 - Vorticity Control Theory
 - Hardware and Experimental Set-up
 - Dynamic Test Results in Wind Tunnel
 - Conclusions

Company Background

- Founded: February, 1991
- **Mission:** To find new and innovative technological solutions in advanced controls and microdevices for various military and commercial applications.
- **Focus:** To transition basic research and development technologies from the laboratory environment to hardware platforms.
- Location: 673G Alpha Drive, Cleveland, Ohio
- Employees: Twenty employees (sixteen full-time) and twelve consultants
- Core technologies:
 - Micro Devices and Sensors
 - Advanced Controls

Orbital Research is a Small Business but....

In business for 10 years

Inc.

 Top 500 – selected as one of the fastest growing companies in the US to be awarded 06/02

 "Weatherhead 100 - Outstanding Corporate Growth Award," Weatherhead School of Management 1999, 2000 and 2001

• "Inner City 100 Award" from Inc. Magazine's Initiative for a Competitive Inner City in 1999, 2000, and 2001

Adanced Real-Time Control Research

MAPPER (Genetic Algorithm)

Multiresolution Autonomous Path Planning
Evolutionary Routing Algorithm

MAPPER - finds near optimal solutions

Biologically Inspired Controls

- <u>Bio</u>logically Inspired <u>A</u>utonomous <u>V</u>ehicle
 <u>E</u>scape <u>R</u>eflex <u>T</u>actic (*BioAVERT*)
- <u>Bio</u>logically Inspired Target <u>Seeking</u> System

Micro Devices and Sensors

MEMS Microvalves

Flow Control Devices

Medical Devices

Missile and Airfoil Control

MEMS Microvalve

Array of 8 **Microvalves**

Refreshable Braille **Display System**

Physiological Electrode

Micro Pressure Transducers

In-Situ Pressure Transducers for Turbine Engines

- dynamic pressure measurement
- Stall detection
- Reduced emissions
- •Fuel efficiency
- Blade-tip passing
- Flame-out detection

Engine health monitoring

In-cylinder Pressure Transducers for Diesel Engines

- Linear output over wide range of strain
- High sensitivity
- Operates above engine temperature
- Robust design for combustion monitoring

Orbital Research Inc. =

Missile Control Theory

Enhanced Missile Maneuverability Through Intelligent Control of Asymmetric Vortices

Keys to Enhanced Maneuverability:

- Real-time Controller respond to sensor feedback and guidance information
- Pressure Sensors provide low cost flow environment characterization
- MEMS Actuation of Flow Effectors provide low power, low volume actuation

Active Flow Control Overview

- AIRFOIL RESEARCH
- DELTA WING RESEARCH
- MISSILE RESEARCH

Experimental Fluid Dynamics (EFD)

Computational Fluid Dynamics (CFD)

Orbital Research Inc.

Asymmetric Vortices at High Angles of Attack

Effect of a on Leeside Flowfield

Asymmetric Vortex
Shedding at High a is
Caused By Uneven Flow
Separation from the
Nosecone

Reference:

Ericsson, L. E., Reding, J. P.,
Asymmetric Flow Separation and
Vortex Shedding on Bodies of
Revolution, Tactical Missile
Aerodynamics, edited by Michael J.
Hemsch, Vol. 141, Progress in
Aerospace and Aeronautics, AIAA,
New York, pp.391-452, 1991.

Slender Body Aerodynamic Problems

Significant Asymmetric Vortices at High Angles of Attack

- Limit Maneuverability and Range
- Reduce Stability especially at High Angles of Attack

Causes of Asymmetric Vortices at High Angles of Attack

- Uneven flow separation from the nosecone
- Micro-asymmetries on the surface of the nosecone
- Small dents, cracks in the paint, microscopic imperfections near the tip of the nosecone
- Other factors bluntness of the forebody, Reynolds number, roll angle, and, the angle of attack.

Missile Model

Flow Visualization using Laser Sheet

Significant yawing moments cause <u>instability</u> due to pressure differentials across missile body

Slender Body Research Goals

- Stabilize a 3:1 Tangent Ogive Missile while at High Angle of Attacks by controlling Asymmetric Vortex Formation with Deployable Micro Flow Control Devices
- Generate Moments Utilizing Deployable Flow Effectors for Active Control
- Design and Develop a Control Algorithm based on Wind Tunnel Tests for Stabilization and Enhanced Maneuverability

Control power

Deployable Flow Effectors –

Co-Located Actuator and Sensors

Photograph of Nose

Flow Effectors Deployed

Goal to prove deployable flow effectors on missile nose can stabilize and control forces caused by phantom yaw at high alpha

MEMS Actuation for Deployable Flow Effectors

MEMS Challenges for aerodynamic surfaces

- Need all weather Actuator (temperature, rain, snow, ice)
- The inherent fragility of the MEMS devices
- Insufficient throws
- Interfacing constraints such as power and size
- The temperature change (above 200°C)

MEMS - Microvalve beneath the surface

Power consumption < 5mW Flow rates – 0-300 ml/min. Pressure – 1-10 psi.

ORI's MEMS Microvalve

- Closed position

Orifice wafer thru holes

Diaphragm wafer thru holes

ORI's MEMS Microvalve
- Open position

Orbital Research Inc. =

ORI's Patented MEMS Microvalve Actuation

Closed-Loop Feedback Control – Block Diagram

Experimental Set-up & Facility

Flow Visualization Snapshots - Vortex Control

Laser sheet flow visualization at $a = 60^{\circ}$. (a) Normal view of Missile model (b) Baseline with no DFE (c) DFE #5 actuated (d) DFE #1 actuated.

Experimental Results - Control Forces at 40° AoA

Control Forces - 45° AoA

Control Forces - 50° AoA

Deployable Flow Effectors Cycling Effects

Deployable Flow Effectors – Power Spectrum

Power spectrum baseline model

Power spectrum – DFE cycling at 7 Hz. 50% duty cycle

Power spectrum – passively deployed flow effector

Power spectrum – DFE cycling at 20 Hz. 50% duty cycle

Orbital Research Inc.

FE 1

Airflow

Real Time Force Plot

Actuator State

Real-Time Dynamic Missile Control @ 60° AoA

FE 2 Base Line (No Control)

Control Enabled (Desired Force Obtained)

Control Enabled (Zero Side Force)

Control Enabled (Opposite Side Force Obtained)

Dynamic Model Testing

- Pitch Rates up to 140°/s
- Dynamic Missile Control with Multiple Flow Effectors and Pressure Sensors
- Closed Loop Control During High Rates

Dynamic Sweep & High Alpha Missile Control

Accomplishments of Missile Control Program

- Stabilized a 3:1 Tangent Ogive Missile model while at High Angle of Attacks Using Co-located Sensors and Actuator which controlled Asymmetric Vortex Formation with Deployable Flow Control Devices
- Successfully Generated Moments Utilizing Deployable Flow Effectors for Active Control
- Demonstrated Closed-loop Missile Control Under Static Conditions, High Alpha Sweep, & Dynamic Conditions at High Alpha During Wind Tunnel Tests

